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ABSTRACT

B e .&5',. i

Bounds are obtained for the limiting distribution of the
delay in queue for a GI/G/1 system via Martingale theory.
These bounds are somewhat stronger than similar bounds
recently obtained by Kingman. Simplifications of the
bounds are obtained in the special cases where the ser-
vice distribution is either IFR, DFR, NBU or NWU.
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1. INTRODUCTION s

Consider the usual GI/G/1 queue with interarrival times between customers
xl,xz, ... and gservice times Yl’YZ’ .e., where E(Yi) < E(Xi) <o, Let

Ui = Yi - )(i and assume that there exists a nonzero value 6 such that

eu
E[z i] =1, If such a value of 6 exists then by Jensen's inequality it
must be positive since EUi < 0. Let Dn denote the delay in queue of the

nth customer, and let

D(t) = lim P{Dn >t} .

n>e

In {1] and [2] the following inequality was proven by Kingman

ae Ot < D(t) < e ot

where

a = inf dF(y)/fee(y-t)dF(y)
e t t

and where F 1is the distribution of U i . Kingman proved the rigl.'lt side of

the above inequality in [1] by using Kolmogorov's inequality for Martingales,
and used a different technique in [2] to obtain the complete inequality. Fol-
lowing the Martingale approach of Kingman but ’using an appropriate stopping time

rather than Kolmogorov's inequality a somewhat sharper inequality will now be

obtained.




2. THE INEQUALITIES

As was shown by Lindley [3]

Ui >t for some n=1,2, ... ; c

D(t) = P{

[l e -

n
o yu, : :
If we let zn =g s » then as zn is the product of independent random

variables each with mean 1, it follows that {zn n > 1} is a Martingale. For
a fixed positive constant A , define the stopping time NA by

NA = 1st n such that either Zn > eet or Zn < e-eA .

As is well known the moment generating function of NA exists in a region

about 0 and thus by Martingale theory

l= E(Zn) = E(ZN )

A
P
e)Uu N N
1 i A A
1) = Ele IX-Ui_>tP Zui>: +
1 1
FNA
°§U1 N, A
Efe | Ju, <-af LU, <-af.
Now, NA NA
eJu, N é({u-) N
1 i A ot 1 i A
(2) Ele | Ju >t]=eEle | Tu >¢ef .
1 , 1
NA-l
By conditioning on NA and 2 Ui we obtain that
1
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O<r O<r

Also, since

A n
limP(2U1>t)-P{IUi>t for some n<°°l-l-)(t)
Ave 1 1
and : NA
e}l:ui N,
1lim Ele | ZUi<-A =0
A+ 1

we obtain from (i), (2), and (3), by letting A+« that

-0t . -0t
‘e

- e )
(4) G(Ul-r) < D(t) < O(Ul—r) 8
sup Ele | v, >« inf Ele | U, >r
1 1
O<r O<r ‘

Note that the left side inequality is just the left side of Kingman's inequality

while the right sided inequality is stronger than K.I.ngman‘s..r
A somewhat weaker -though probably more useful inequality based on the '

service distribution can be obtained from the above as follows::

6(U,~r) o[Y,~(X,41)]

1l 11

E[e |01>r]-E[e |Yl>x1+r .
Hence, by conditioning on Xl we obtain that

0 (Yl—s) 0 (Ul-t) 0 (Yl-s)
inf E|le | Yy, >8]<Ele | U, > r] < sup Eje | ¥, > s

0<s ' O<s

;*The sup and inf are taken over all nonnegative values of r for which

P(U1> r) >0.

SR

o) U,- N
8(U,-r) i A e (U,~r)
3) :LnfE[e & |U1>r]_<_Eel | 2U1>tJ_<_supE[e . |U1>r].

el
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As this is true for all r , we obtain that

" 6(U,-1) ] [ 0(Y,-8) |
sup Ele |Ul>r < sup Efe |Y1>s
O<r -~ - 08 T =
8 (U, ~r) ) [ect;-9 )
; inf Efe | u; > rf > iof Eje | Y, >8] .
B O<r *— - 0<s -
g Thus, from (4) we obtain’
#., a
v o0t _ oot
? (5) IE7 £D(e) < oY, -5)
_ sup Ele |Y1>s inf Efe |Y1>s
O<s O<s

X 3

A very importani: special case occurs when the service times are exponentially
distributed with mean 1/u . That is, when the system is a G/M/1 queue. In
this case, using the lack of memory of the exponential distribution we have that

the conditional distribution of Y1 ~ 8 given that Yl > g 18 just exponential

with mean 1/y . Hence,

8 (Y, -8) | [ a(x.~8)
BUpE[e 1 |Yl>s]-infE[e. 1 |Y1>g]-_L

AT RS R e A R TR

and thus in the G/M/1 case

= 0 -0t
D(t) —— e

SERE e S

In certain special cases the sup and inf in equation (5) can be more

easily expressed. We say that the service distribution G is NBU if

G(s + t) < G(s)G(t) for all s,t > 0

e T R T

and it is said to be NWU 1if

The sup and inf in equation (5) are taken over all nonnegative values of
s for which P(Yl >8)>0.
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G(s + t) > E(s)a,(\t) for all s,t > 0

where 5(:) =] - G(t) . Thus G 1s NBU (NWU) means that the remaining
service time of a customer who has already been in service for some fixed

time is always stochastically smaller (larger) than the service time of a

customer just entering service.+
Since V being stochastically larger than W implies that

E[£(V)] > E[f(W}] for all increasing functions f , we obtain that if G

18- NBU with G(0) = 0 then

0(Y.-8) oY
supE[e E |Y1>a].-EL 1]

O<s

while 1f G is NWU with G(0) = O' then

0(Y,~-8) :)'¢
infE[e L |Y1>s]-z[e.1] :

O<s

If we make the stronger (than NBU) assumption that G 1s IFR (that

is, that 9—‘3—4'—-51 decreases in t for all s ) then it easily follows when
G(t)

G(0) = 0 that

8(Y,~8) oy.]
supE[e R |Y1>s]-E[e ]]

O<s

and

8(Y,-8) 8(Y,-s)
inf E|le | ¥, > 8] = 1in E|e Yy >s
O<s s*M

where M = sup{t : G(t) > 0} .

The terminology NBU (new better than used) originated in reliability litera~
ture where it means that if G 1s the distribution of the lifetime of a
component then the remaining life of any s year old (that is, any used) item
is stochastically smaller than the lifetime of a new item.

o i A A 5 A AR LA N P A AT S s ;i % -




R M RN Y SR

w3

»
|8

OB

Similarly if G 1is assumed to be DFR (that is, if it is assumed that

Gs+ t) increases in t for all s) then it follows when G(0) = 0 that

G(t)
[ 0(t,-s) [ 0(Y,-s)
sup Efe | Y, >s8f= lim E|e | Y, >s

O<s g+

0(Y,~s) )4
mfz[e . |Yl>s]-E[e 1].

O<s

The importance of DFR service time distributions partly derives from the

" fact that if the actual service distribution is a mixture of other distributions

each of which is DFR (for instance, each may be exponential) then the service

distribution is also DFR .
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